Clap and fling mechanism with interacting porous wings in tiny insect flight.
نویسندگان
چکیده
The aerodynamics of flapping flight for the smallest insects such as thrips is often characterized by a 'clap and fling' of the wings at the end of the upstroke and the beginning of the downstroke. These insects fly at Reynolds numbers (Re) of the order of 10 or less where viscous effects are significant. Although this wing motion is known to augment the lift generated during flight, the drag required to fling the wings apart at this scale is an order of magnitude larger than the corresponding force acting on a single wing. As the opposing forces acting normal to each wing nearly cancel during the fling, these large forces do not have a clear aerodynamic benefit. If flight efficiency is defined as the ratio of lift to drag, the clap and fling motion dramatically reduces efficiency relative to the case of wings that do not aerodynamically interact. In this paper, the effect of a bristled wing characteristic of many of these insects was investigated using computational fluid dynamics. We performed 2D numerical simulations using a porous version of the immersed boundary method. Given the computational complexity involved in modeling flow through exact descriptions of bristled wings, the wing was modeled as a homogeneous porous layer as a first approximation. High-speed video recordings of free-flying thrips in take-off flight were captured in the laboratory, and an analysis of the wing kinematics was performed. This information was used for the estimation of input parameters for the simulations. Compared with a solid wing (without bristles), the results of the study show that the porous nature of the wings contributes largely to drag reduction across the Re range explored. The aerodynamic efficiency, calculated as the ratio of lift to drag coefficients, was larger for some porosities when compared with solid wings.
منابع مشابه
Flexible clap and fling in tiny insect flight.
Of the insects that have been filmed in flight, those that are 1 mm in length or less often clap their wings together at the end of each upstroke and fling them apart at the beginning of each downstroke. This ;clap and fling' motion is thought to augment the lift forces generated during flight. What has not been highlighted in previous work is that very large forces are required to clap the win...
متن کاملAerodynamic forces and flows of the full and partial clap-fling motions in insects
Most of the previous studies on Weis-Fogh clap-fling mechanism have focused on the vortex structures and velocity fields. Detailed pressure distribution results are provided for the first time in this study to reveal the differences between the full and the partial clap-fling motions. The two motions are studied by numerically solving the Navier-Stokes equations in moving overset grids. The Rey...
متن کاملClap-and-fling mechanism in a hovering insect-like two-winged flapping-wing micro air vehicle
This study used numerical and experimental approaches to investigate the role played by the clap-and-fling mechanism in enhancing force generation in hovering insect-like two-winged flapping-wing micro air vehicle (FW-MAV). The flapping mechanism was designed to symmetrically flap wings at a high flapping amplitude of approximately 192°. The clap-and-fling mechanisms were thereby implemented at...
متن کاملWing-kinematics measurement and aerodynamics in a small insect in hovering flight
Wing-motion of hovering small fly Liriomyza sativae was measured using high-speed video and flows of the wings calculated numerically. The fly used high wingbeat frequency (≈265 Hz) and large stroke amplitude (≈182°); therefore, even if its wing-length (R) was small (R ≈ 1.4 mm), the mean velocity of wing reached ≈1.5 m/s, the same as that of an average-size insect (R ≈ 3 mm). But the Reynolds ...
متن کاملThe aerodynamic effects of wing-wing interaction in flapping insect wings.
We employed a dynamically scaled mechanical model of the small fruit fly Drosophila melanogaster (Reynolds number 100-200) to investigate force enhancement due to contralateral wing interactions during stroke reversal (the ;clap-and-fling'). The results suggest that lift enhancement during clap-and-fling requires an angular separation between the two wings of no more than 10-12 degrees . Within...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 217 Pt 21 شماره
صفحات -
تاریخ انتشار 2014